Advertisements
Advertisements
प्रश्न
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
पर्याय
16
8
4
2
उत्तर
\[8\]
\[\text { Let } z = \left( \frac{2i}{1 + i} \right)\]
\[ \Rightarrow z = \frac{2i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{1 - i^2}\]
\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{1 + 1} \left[ \because i^2 = - 1 \right]\]
\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{2}\]
\[ \Rightarrow z = i - i^2 \]
\[ \Rightarrow z = i + 1\]
\[\text { Now }, z^n = \left( 1 + i \right)^n \]
\[\text { For } n = 2, \]
\[ z^2 = \left( 1 + i \right)^2 \]
\[ = 1 + i^2 + 2i\]
\[ = 1 - 1 + 2i\]
\[ = 2i . . . (1) \]
\[\text { Since this is not a positive integer }, \]
\[\text { For } n = 4, \]
\[ z^4 = \left( 1 + i \right)^4 \]
\[ = \left[ \left( 1 + i \right)^2 \right]^2 \]
\[ = \left( 2i \right)^2 \left[ \text { Using } (1) \right] \]
\[ = 4 i^2 \]
\[ = - 4 . . . (2)\]
\[\text { This is a negative integer }. \]
\[\text { For } n = 8, \]
\[ z^8 = \left( 1 + i \right)^8 \]
\[ = \left[ \left( 1 + i \right)^4 \right]^2 \]
\[ = \left( - 4 \right)^2 \left[ \text { Using } (2) \right]\]
\[ = 16\]
\[\text { This is a positive integer } . \]
\[\text { Thus }, z = \left( \frac{2i}{1 + i} \right)^n\text { is positive for } n = 8 . \]
\[\text { Therefore, 8 is the least positive integer such that } \left( \frac{2i}{1 + i} \right)^n\text { is a positive integer } .\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write the argument of −i.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
Show that `(-1+sqrt3i)^3` is a real number.