Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
उत्तर
\[\frac{3 + 2i}{- 2 + i}\]
\[ = \frac{3 + 2i}{- 2 + i} \times \frac{- 2 - i}{- 2 - i}\]
\[ = \frac{- 6 - 3i - 4i - 2 i^2}{4 - i^2} \left( \because i^2 = - 1 \right)\]
\[ = \frac{- 6 - 7i + 2}{4 + 1}\]
\[ = \frac{- 4 - 7i}{5}\]
\[ = \frac{- 4}{5} - \frac{7}{5}i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The argument of \[\frac{1 - i}{1 + i}\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i30 + i40 + i50 + i60
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
State True or False for the following:
2 is not a complex number.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Show that `(-1+sqrt3i)^3` is a real number.