मराठी

The real value of θ for which the expression 1+icosθ1-2icosθ is a real number is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.

पर्याय

  • `npi + pi/4`

  • `npi + (-1)n  pi/4`

  • `2npi +-  pi/2`

  • None of these

MCQ
रिकाम्या जागा भरा

उत्तर

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is `underlinebb(2npi +-  pi/2)`.

Explanation:

Let z = `(1 + i cos theta)/(1 - 2i cos theta)`

= `(1 + i cos theta)/(1 - 2i cos theta) xx (1 + 2i cos theta)/(1 + 2i cos theta)`

= `(1 + 2i cos theta + i cos theta + 2i^2 cos^2 theta)/(1 - 4i^2 cos^2 theta)`

= `(1 + 3i cos theta - 2 cos^2 theta)/(1 + 4 cos^2 theta)`

= `(1 - 2 cos^2 theta)/(1 + 4 cos^2 theta) + (3 cos theta)/(1 + 4 cos^2 theta)i`

If z is a real number, then

`(3 cos theta)/(1 + 4cos^2 theta)` = 0

⇒ 3cosθ = 0

⇒ cosθ = 0

∴ θ = `2npi +-  pi/2`, n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 48 | पृष्ठ ९७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write 1 − i in polar form.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i35 


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×