Advertisements
Advertisements
प्रश्न
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
पर्याय
`npi + pi/4`
`npi + (-1)n pi/4`
`2npi +- pi/2`
None of these
उत्तर
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is `underlinebb(2npi +- pi/2)`.
Explanation:
Let z = `(1 + i cos theta)/(1 - 2i cos theta)`
= `(1 + i cos theta)/(1 - 2i cos theta) xx (1 + 2i cos theta)/(1 + 2i cos theta)`
= `(1 + 2i cos theta + i cos theta + 2i^2 cos^2 theta)/(1 - 4i^2 cos^2 theta)`
= `(1 + 3i cos theta - 2 cos^2 theta)/(1 + 4 cos^2 theta)`
= `(1 - 2 cos^2 theta)/(1 + 4 cos^2 theta) + (3 cos theta)/(1 + 4 cos^2 theta)i`
If z is a real number, then
`(3 cos theta)/(1 + 4cos^2 theta)` = 0
⇒ 3cosθ = 0
⇒ cosθ = 0
∴ θ = `2npi +- pi/2`, n ∈ N.
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write 1 − i in polar form.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The polar form of (i25)3 is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i35
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.