मराठी

For Any Two Complex Numbers Z1 and Z2 and Any Two Real Numbers A, B, Find the Value of | a Z 1 − B Z 2 | 2 + | a Z 2 + B Z 1 | 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].

उत्तर

\[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2 = \left( a z_1 - b z_2 \right)\left( \bar{{a z_1 - b z_2}} \right) + \left( a z_2 + b z_1 \right)\left( \bar{{a z_2 + b z_1}} \right)\]

\[ = \left( a z_1 - b z_2 \right)\left( a \bar{{z_1}} - b \bar{{z_2}} \right) + \left( a z_2 + b z_1 \right)\left( a \bar{{z_2}} + b \bar{{z_1}} \right)\]

\[ = \left( a^2 z_1 \bar{{z_1}} - ab z_1 \bar{{z_2}} - ab z_2 \bar{{z_1}} + b^2 z_2 \bar{{z_2}} \right) + \left( a^2 z_2 \bar{{z_2}} + ab z_1 \bar{{z_2}} + ab z_2 \bar{{z_1}} + b^2 z_1 \bar{{z_1}} \right)\]

\[ = \left[ \left( a^2 + b^2 \right) z_1 \bar{{z_1}} + \left( a^2 + b^2 \right) z_2 \bar{{z_2}} \right]\]

\[ = \left[ \left( a^2 + b^2 \right)\left( z_1 \bar{{z_1}} + z_2 \bar{{z_2}} \right) \right]\]

\[ = \left[ \left( a^2 + b^2 \right)\left( \left| z_1 \right|^2 + \left| z_2 \right|^2 \right) \right]\]

Hence, 

\[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2 = \left( a^2 + b^2 \right)\left( \left| z_1 \right|^2 + \left| z_2 \right|^2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.5 | Q 19 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

i457


Evaluate the following:

(ii) i528


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Write 1 − i in polar form.


Write the argument of −i.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


Find a and b if (a + ib) (1 + i) = 2 + i


Evaluate the following : i35 


Evaluate the following : i93  


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×