मराठी

If ( 1 + I ) 2 2 − I = X + I Y Find X + Y. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.

उत्तर

\[\frac{\left( 1 + i \right)^2}{2 - i} = \frac{1^2 + i^2 + 2i}{2 - i}\]

\[ = \frac{1 - 1 + 2i}{2 - i} [ \because i^2 = - 1]\]

\[ = \frac{2i}{2 - 1} \times \frac{2 + i}{2 + i} \]

\[ = \frac{2i(2 + i)}{2^2 - i^2}\]

\[ = \frac{4i + 2 i^2}{4 + 1} [ \because i^2 = - 1]\]

\[ = \frac{4i - 2}{5}\]

\[ = \frac{- 2}{5} + \frac{4}{5}i . . . . (1)\]

It is given that,

\[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]

\[ \Rightarrow - \frac{2}{5} + \frac{4}{5}i = x + iy [\text { From }(1)]\]

\[ \Rightarrow x = - \frac{2}{5} \text { and } y = \frac{4}{5}\]

\[\therefore x + y = \frac{- 2}{5} + \frac{4}{5}\]

\[ = \frac{2}{5}\]

Thus, x + y = \[\frac{2}{5}\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.2 | Q 13 | पृष्ठ ३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the multiplicative inverse of the following complex number:

1 − i


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


Which of the following is correct for any two complex numbers z1 and z2?

 


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i35 


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : i403 


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×