Advertisements
Advertisements
प्रश्न
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
उत्तर
\[\frac{\left( 1 + i \right)^2}{2 - i} = \frac{1^2 + i^2 + 2i}{2 - i}\]
\[ = \frac{1 - 1 + 2i}{2 - i} [ \because i^2 = - 1]\]
\[ = \frac{2i}{2 - 1} \times \frac{2 + i}{2 + i} \]
\[ = \frac{2i(2 + i)}{2^2 - i^2}\]
\[ = \frac{4i + 2 i^2}{4 + 1} [ \because i^2 = - 1]\]
\[ = \frac{4i - 2}{5}\]
\[ = \frac{- 2}{5} + \frac{4}{5}i . . . . (1)\]
It is given that,
\[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]
\[ \Rightarrow - \frac{2}{5} + \frac{4}{5}i = x + iy [\text { From }(1)]\]
\[ \Rightarrow x = - \frac{2}{5} \text { and } y = \frac{4}{5}\]
\[\therefore x + y = \frac{- 2}{5} + \frac{4}{5}\]
\[ = \frac{2}{5}\]
Thus, x + y = \[\frac{2}{5}\].
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
Which of the following is correct for any two complex numbers z1 and z2?
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i35
Evaluate the following : i888
Evaluate the following : i93
Evaluate the following : i403
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).