Advertisements
Advertisements
प्रश्न
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
उत्तर
Let \[z = x + iy\]
Then,
\[z_2 = \frac{z_1 - 1}{z_1 + 1}\]
\[ = \frac{x + iy - 1}{x + iy + 1}\]
\[ = \frac{\left( x - 1 \right) + iy}{\left( x + 1 \right) + iy} \times \frac{\left( x + 1 \right) - iy}{\left( x + 1 \right) - iy}\]
\[ = \frac{x^2 + x - ixy - x - 1 + iy + ixy + iy - i^2 y^2}{\left( x + 1 \right)^2 - i^2 y^2}\]
\[ = \frac{x^2 + y^2 - 1 + 2iy}{x^2 + 1 + 2x + y^2} [ \because i^2 = - 1]\]
Now,
\[Re\left( z_2 \right) = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1 + 2x}\]
\[ = 0 [ \because \left| z_1 \right| = 1 \Rightarrow x^2 + y^2 = 1]\]
Thus, the real parts of z2 is zero.
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Solve the equation \[\left| z \right| = z + 1 + 2i\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Show that `(-1+ sqrt(3)i)^3` is a real number.