हिंदी

If Z1 is a Complex Number Other than −1 Such that | Z 1 | = 1 and Z 2 = Z 1 − 1 Z 1 + 1 Then Show that the Real Parts of Z2 is Zero. - Mathematics

Advertisements
Advertisements

प्रश्न

If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.

उत्तर

Let \[z = x + iy\]

Then,

\[z_2 = \frac{z_1 - 1}{z_1 + 1}\]

\[ = \frac{x + iy - 1}{x + iy + 1}\]

\[ = \frac{\left( x - 1 \right) + iy}{\left( x + 1 \right) + iy} \times \frac{\left( x + 1 \right) - iy}{\left( x + 1 \right) - iy}\]

\[ = \frac{x^2 + x - ixy - x - 1 + iy + ixy + iy - i^2 y^2}{\left( x + 1 \right)^2 - i^2 y^2}\]

\[ = \frac{x^2 + y^2 - 1 + 2iy}{x^2 + 1 + 2x + y^2} [ \because i^2 = - 1]\]

Now,

\[Re\left( z_2 \right) = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1 + 2x}\]

\[ = 0 [ \because \left| z_1 \right| = 1 \Rightarrow x^2 + y^2 = 1]\]

Thus, the real parts of z2 is zero.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 21 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i35 


Evaluate the following : i93  


Evaluate the following : i116 


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


State True or False for the following:

The order relation is defined on the set of complex numbers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×