Advertisements
Advertisements
प्रश्न
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
उत्तर
\[ \frac{\left( 1 + i \right)x - 2i}{3 + i} + \frac{\left( 2 - 3i \right)y + i}{3 - i} = i\]
\[ \Rightarrow \frac{\left( 1 + i \right)\left( 3 - i \right)x - 2i\left( 3 - i \right) + \left( 2 - 3i \right)\left( 3 + i \right)y + i\left( 3 + i \right)}{\left( 3 + i \right)\left( 3 - i \right)} = i\]
\[ \Rightarrow \frac{3x - ix + 3ix - i^2 x - 6i + 2 i^2 + 6y + 2iy - 9iy - 3 i^2 y + 3i + i^2}{9 - i^2} = i\]
\[ \Rightarrow \frac{4x + 2ix - 3i + 9y - 7iy - 3}{10} = i\]
\[ \Rightarrow \left( 4x + 9y - 3 \right) + i\left( 2x - 3 - 7y \right) = 10i\]
\[\text { Comparing both the sides: } \]
\[4x + 9y - 3 = 0\]
\[ \Rightarrow 4x + 9y = 3 . . . . (1) \]
\[2x - 3 - 7y = 10\]
\[ \Rightarrow 2x - 7y = 13 . . . (2)\]
\[\text{Multiplying equation (2) by 2:} \]
\[4x - 14y = 26 . . . (3) \]
\[\text { Subtracting equation (3) from (1): } \]
\[ 4x + 9y = 3 \]
\[ 4x - 14y = 26 \]
\[ - + - \]
\[ 23y = - 23\]
\[ \therefore y = - 1\]
\[\text { Substituting the value of y in equation (1) }: \]
\[4x - 9 = 3\]
\[ \Rightarrow 4x = 12\]
\[ \Rightarrow x = 3\]
\[ \therefore x = 3 \text { and y } = - 1\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write the argument of −i.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : `1/"i"^58`
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
State True or False for the following:
2 is not a complex number.
Show that `(-1 + sqrt3 "i")^3` is a real number.