हिंदी

If Z1, Z2, Z3 Are Complex Numbers Such that | Z 1 | = | Z 2 | = | Z 3 | = ∣ ∣ ∣ 1 Z 1 + 1 Z 2 + 1 Z 3 ∣ ∣ ∣ = 1 Then Find the Value of | Z 1 + Z 2 + Z 3 | . - Mathematics

Advertisements
Advertisements

प्रश्न

If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .

उत्तर

\[\left| z_1 + z_2 + z_3 \right| = \left| \frac{z_1 \bar{{z_1}}}{\bar{{z_1}}} + \frac{z_2 \bar{{z_2}}}{\bar{{z_2}}} + \frac{z_3 \bar{{z_3}}}{\bar{{z_3}}} \right|\]

\[ = \left| \frac{\left| z_1 \right|^2}{\bar{{z_1}}} + \frac{\left| z_2 \right|^2}{\bar{{z_2}}} + \frac{\left| z_3 \right|^2}{\bar{{z_3}}} \right|\]

\[ = \left| \frac{1}{\bar{{z_1}}} + \frac{1}{\bar{{z_2}}} + \frac{1}{\bar{{z_3}}} \right| [ \because \left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = 1]\]

\[ = \bar{\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right|}\]

\[ = 1 \left[ \because \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1 \right]\]

Thus, the value of \[\left| z_1 + z_2 + z_3 \right|\] is 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 25 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

i457


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write the argument of −i.


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The polar form of (i25)3 is


The argument of \[\frac{1 - i}{1 + i}\] is


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i93  


Evaluate the following : i–888 


Evaluate the following : i30 + i40 + i50 + i60 


Show that 1 + i10 + i20 + i30 is a real number


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×