Advertisements
Advertisements
प्रश्न
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
उत्तर
Column A | Answers |
(a) The value of 1+ i2 + i4 + i6 + ... i20 is | (ii) purely real complex number |
(b) The value of `i^(-1097)` is | (i) purely imaginary complex number |
(c) Conjugate of 1 + i lies in | (iv) Fourth quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iii) second quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(vi) may occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(v) may not occur in conjugate pairs |
Explanation:
(a) Because 1 + i2 + i4 + i6 + ... i20
= 1 – 1 + 1 – 1 + ... + 1 = 1 ......(Which is purely a real complex number.)
(b) Because `i^(-1097)` = `1/((i)^1097)`
= `1/(i^(4 xx 274 + 1)`
= `1/((i^4)^274i)`
= `1/i`
= `i/i^2`
= –i
Which is purely imaginary complex number.
(c) Conjugate of 1 + i is 1 – i which is represented by the point (1, –1) in the fourth quadrant.
(d) Because `(1 + 2i)/(1 - i) = (1 + 2i)/(1 - i) xx (1 + i)/(1 + i)`
= `(-1 + 3i)/2`
= `-1/2 + 3/2 i`
Which is represented by the point `(- 1/2, 3/2)` in the second quadrant.
(e) If b2 – 4ac < 0 = D < 0 i.e., square root of D is a imaginary number.
Therefore, roots are x = `(-b +- "Imaginary Number")/(2a)`
i.e., roots are in conjugate pairs.
(f) Consider the equation `x^2 - (5 + sqrt(2)) x + 5 sqrt(2)` = 0, Where a = 1, b = `-(5 + sqrt(2))`, c = `5 sqrt(2)`, Clearly a, b, c ∈ R.
Now D = b2 – 4ac = `{- (5 + sqrt(2))}^2 - 4.1.5 sqrt(2) = (5 - sqrt(2))^2`.
Therefore x = `(5 + sqrt(2) +- 5 - sqrt(2))/2` = `5sqrt(2)` which do not form a conjugate pair.
APPEARS IN
संबंधित प्रश्न
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if a + 2b + 2ai = 4 + 6i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i93
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |