Advertisements
Advertisements
प्रश्न
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
विकल्प
\[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{4}\]
\[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{6}\]
\[\left| z \right| = \frac{\sqrt{3}}{2},\text { arg }(z) = \frac{5\pi}{24}\]
\[\left| z \right| = \frac{\sqrt{3}}{2}, \text { arg }(z) = \tan^{- 1} \frac{1}{\sqrt{2}}\]
उत्तर
\[z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{6}\]
\[ \Rightarrow z = \frac{1}{\sqrt{2}} + \frac{1}{2}i\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{4}}\]
\[ \Rightarrow \left| z \right| = \sqrt{\frac{1}{2} + \frac{1}{4}}\]
\[ \Rightarrow \left| z \right| = \sqrt{\frac{3}{4}}\]
\[ \Rightarrow \left| z \right| = \frac{\sqrt{3}}{2}\]
\[\tan \alpha = \left| \frac{\text { Im }(z)}{\text { Re }(z)} \right|\]
\[ = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]
\[\text { Since, the point z lies in the first quadrant } . \]
\[\text { Therefore, } \arg(z) = \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i)4
Evaluate the following:
\[\frac{1}{i^{58}}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
The principal value of the amplitude of (1 + i) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
The amplitude of \[\frac{1}{i}\] is equal to
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
If z is a complex number, then
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
Show that `(-1 + sqrt3 "i")^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`