English

If Z = Cos π 4 + I Sin π 6 , Then - Mathematics

Advertisements
Advertisements

Question

If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then

Options

  • \[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{4}\]

  • \[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{6}\]

  • \[\left| z \right| = \frac{\sqrt{3}}{2},\text {  arg }(z) = \frac{5\pi}{24}\]

  • \[\left| z \right| = \frac{\sqrt{3}}{2}, \text { arg }(z) = \tan^{- 1} \frac{1}{\sqrt{2}}\]

MCQ

Solution

\[z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{6}\]

\[ \Rightarrow z = \frac{1}{\sqrt{2}} + \frac{1}{2}i\]

\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{4}}\]

\[ \Rightarrow \left| z \right| = \sqrt{\frac{1}{2} + \frac{1}{4}}\]

\[ \Rightarrow \left| z \right| = \sqrt{\frac{3}{4}}\]

\[ \Rightarrow \left| z \right| = \frac{\sqrt{3}}{2}\]

\[\tan \alpha = \left| \frac{\text { Im }(z)}{\text { Re }(z)} \right|\]

\[ = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]

\[\text { Since, the point z lies in the first quadrant } . \]

\[\text { Therefore, } \arg(z) = \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 5 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write 1 − i in polar form.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i116 


Evaluate the following : i403 


Evaluate the following : `1/"i"^58`


State True or False for the following:

The order relation is defined on the set of complex numbers.


State True or False for the following:

2 is not a complex number.


Show that `(-1 + sqrt3 "i")^3` is a real number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×