Advertisements
Advertisements
Question
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
Options
\[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{4}\]
\[\left| z \right| = 1, \text { arg }(z) = \frac{\pi}{6}\]
\[\left| z \right| = \frac{\sqrt{3}}{2},\text { arg }(z) = \frac{5\pi}{24}\]
\[\left| z \right| = \frac{\sqrt{3}}{2}, \text { arg }(z) = \tan^{- 1} \frac{1}{\sqrt{2}}\]
Solution
\[z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{6}\]
\[ \Rightarrow z = \frac{1}{\sqrt{2}} + \frac{1}{2}i\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{4}}\]
\[ \Rightarrow \left| z \right| = \sqrt{\frac{1}{2} + \frac{1}{4}}\]
\[ \Rightarrow \left| z \right| = \sqrt{\frac{3}{4}}\]
\[ \Rightarrow \left| z \right| = \frac{\sqrt{3}}{2}\]
\[\tan \alpha = \left| \frac{\text { Im }(z)}{\text { Re }(z)} \right|\]
\[ = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]
\[\text { Since, the point z lies in the first quadrant } . \]
\[\text { Therefore, } \arg(z) = \alpha = \tan^{- 1} \left( \frac{1}{\sqrt{2}} \right)\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write 1 − i in polar form.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8