Advertisements
Advertisements
Question
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Solution
`sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
`= sqrt(16 xx -1) + 3sqrt(25 xx - 1) + sqrt(36 xx -1) - sqrt(625 xx -1)`
= 4i + 3(5i) + 6i – 25i
= 4i + 15i + 6i – 25i
= (4 + 15 + 6 – 25)i
= 0i
= 0
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Show that 1 + i10 + i20 + i30 is a real number.
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
The principal value of the amplitude of (1 + i) is
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Evaluate the following : i30 + i40 + i50 + i60
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.