English

Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i - Mathematics and Statistics

Advertisements
Advertisements

Question

Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i

Sum

Solution

(a + b) (2 + i) = b + 1 + (10 + 2a)i

∴ 2(a + b) + (a + b)i = (b + 1) + (10 + 2a)i

Equating real and imaginary parts, we get

2(a + b) = b + 1

∴ 2a + b = 1  ...(i)

and a + b = 10 + 2a

–a + b = 10   ...(ii)

Subtracting (i) – subtracting (ii), we get

3a = – 9

∴ a = – 3

Substituting a = – 3 in (ii), we get

– (– 3) + b = 10

∴ b = 7  

a = – 3 and b = 7

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.1 [Page 6]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

i5 + i10 + i15


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The principal value of the amplitude of (1 + i) is


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : i116 


Evaluate the following : i403 


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×