English

Find the Real Value of X and Y, If ( 3 X − 2 I Y ) ( 2 + I ) 2 = 10 ( 1 + I ) - Mathematics

Advertisements
Advertisements

Question

Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]

Solution

\[ \left( 3x - 2iy \right) \left( 2 + i \right)^2 = 10 \left( 1 + i \right)\]

\[ \Rightarrow \left( 3x - 2iy \right)\left( 4 + i^2 + 4i \right) = 10\left( 1 + i \right)\]

\[ \Rightarrow \left( 3x - 2iy \right)\left( 3 + 4i \right) = 10\left( 1 + i \right)\]

\[ \Rightarrow 9x + 12xi - 6iy - 8 i^2 y = 10 + 10i\]

\[ \Rightarrow 9x + 8y + i\left( 12x - 6y \right) = 10 + 10i\]

\[\text{Comparing both the sides:} \]

\[9x + 8y = 10 . . . . (1)\]

\[12x - 6y = 10\]

\[or, 6x - 3y = 5 . . . (2)\]

\[\text { Multiplying equation (1) by 3 and equation (2) by 8 }, \]

\[27x + 24y = 30 . . . . (3) \]

\[48x - 24y = 40 . . . . (4)\]

\[\text {Adding equations (3) and (4):} \]

\[75x = 70\]

\[ \therefore x = \frac{14}{15}\]

\[\text { Substituting the value of x in equation (1): } \]

\[9 \times \frac{14}{15} + 8y = 10\]

\[ \Rightarrow \frac{126}{15} + 8y = 10\]

\[ \Rightarrow 8y = 10 - \frac{126}{15}\]

\[ \Rightarrow 8y = \frac{24}{15}\]

\[ \Rightarrow y = \frac{1}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 2.2 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write the argument of −i.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


Which of the following is correct for any two complex numbers z1 and z2?

 


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Evaluate the following : i888 


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×