English

Express the following complex number in the standard form a + i b: (11−4i−21+i)(3−4i5+i) - Mathematics

Advertisements
Advertisements

Question

Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]

Sum

Solution

`(1/(1 - 4i) - 2/(1 + i))((3 - 4i)/(5 + i))`

= `(1 + i - 2(1 - 4i))/((1 - 4i)(1 + i)) xx (3 - 4i)/(5 + i)`

= `(1 + i - 2 + 8i)/(1(1 + i)-4i(1 + i))xx (3 - 4i)/(5 + i)`

= `(-1+9i)/((1 + i - 4i + 4)) xx (3 - 4i)/(5 + i)`

= `(-1 + 9i)/((1 + i - 4i + 4)) xx (3 - 4i)/(5 + i)`

= `(-1(3 - 4i) + 9i(3 - 4i))/((5 - 3i)(5 + i))`

= `(-3 + 4i + 27i + 36)/(5(5 + i)-3i(5 + i))`

= `(33 + 31j)/(25 + 5i - 15i + 3)`

= `(33 + 31j)/(28 - 10i)`

= `(33 + 31j)/(28 - 10i) xx ((28 + 10i))/(28 + 10i)`

= `(33 xx 28 + 33 xx 10i + 31i xx 28 + 31i xx 10i)/(28^2 + 10^2)`

= `(924 + 330i + 868i - 310)/(784 + 100)`

= `(614 + 1198i)/(884)`

= `614/884 + (1198)/884 i`

= `307/442 + 599/442 i`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 1.11 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write 1 − i in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


The value of \[(1 + i )^4 + (1 - i )^4\] is


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i93  


Evaluate the following : i30 + i40 + i50 + i60 


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

The order relation is defined on the set of complex numbers.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×