Advertisements
Advertisements
Question
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Solution
(1 + i)6 + (1 − i)3
= [(1 + i)2]3 + (1 − i)3
= [12 + i2 + 2i]3 + (13 − i3 + 3i2 − 3i)
= [1 − 1 + 2i]3 + (1 + i − 3 − 3i) [∵ i2 = −1, i3 = −i]
= (2i)3 + (−2 − 2i)
= 8i3 − 2 − 2i
= −8i − 2 − 2i [∵ i3 = −i]
= −10i − 2
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Evaluate the following:
(ii) i528
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The value of \[(1 + i )^4 + (1 - i )^4\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i116
Evaluate the following : i–888
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8