Advertisements
Advertisements
Question
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Solution
`((1 + "i")/(1 - "i"))^2 = (1 + "i")^2/(1 -"i")^2`
= `(1 + 2"i" + "i"^2)/(1 - 2"i" + "i"^2)`
= `(1 + 2"i" - 1)/(1 - 2"i" - 1)` ...[∵ i2 = – 1]
= `(2"i")/(-2"i")`
= – 1
= – 1 + 0·i
This is of the form a + bi, where a = – 1 and b = 0.
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The polar form of (i25)3 is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The principal value of the amplitude of (1 + i) is
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If z is a complex number, then
Find a and b if a + 2b + 2ai = 4 + 6i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i35
Evaluate the following : i116
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |