English

If Z = 1 − Cos θ + I Sin θ , Then | Z | = - Mathematics

Advertisements
Advertisements

Question

\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]

Options

  • \[2 \sin\frac{\theta}{2}\]

  • \[2 \cos\frac{\theta}{2}\]

  • \[2\left| \sin\frac{\theta}{2} \right|\]

  • \[2\left| \cos\frac{\theta}{2} \right|\]

MCQ

Solution

\[2\left| \sin\frac{\theta}{2} \right|\]

\[\because z = 1 - \cos\theta + i \sin\theta\]

\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 - \cos\theta \right)^2 + \sin^2 \theta}\]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]

\[ \Rightarrow \left| z \right| = \sqrt{1 + 1 - 2\cos\theta}\]

\[ \Rightarrow \left| z \right| = \sqrt{2\left( 1 - \cos\theta \right)}\]

\[ \Rightarrow \left| z \right| = \sqrt{4 \sin^2 \frac{\theta}{2}}\]

\[ \Rightarrow \left| z \right|=2\left| \sin\frac{\theta}{2} \right|\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 23 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: (1 – i)4


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


If z is a complex numberthen


Which of the following is correct for any two complex numbers z1 and z2?

 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i116 


Evaluate the following : i403 


Evaluate the following : `1/"i"^58`


Evaluate the following : i30 + i40 + i50 + i60 


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×