English

If | Z | = 2 and Arg ( Z ) = π 4 ,Find Z. - Mathematics

Advertisements
Advertisements

Question

If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.

Solution

We know that,

\[z = \left| z \right|\left\{ cos\left[ \arg\left( z \right) \right] + i\sin\left[ \arg\left( z \right) \right] \right\}\] 
 
\[     = 2\left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right)\] 
 
\[     = 2\left( \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \right)\] 
 
\[     = \sqrt{2}\left( 1 + i \right)\]
Hence, 
\[z = \sqrt{2}\left( 1 + i \right)\].
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.5 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.5 | Q 23 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The argument of \[\frac{1 - i}{1 + i}\] is


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


State True or False for the following:

The order relation is defined on the set of complex numbers.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×