English

Let z1 = 2 – i, z2 = –2 + i. Find Re(z1z2z¯1) - Mathematics

Advertisements
Advertisements

Question

Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`

Sum

Solution

z1 = 2 – i, z2 = –2 + i

`((z_1z_2)/barz_1)  =  ((2 - i)(-2 +i))/(2 -i) = (-(2 - i)(2 -i))/(2 + i)`

= `- (2-i)^2/(2 + i)  = (- (4 + i^2 - 4i))/(2 + i)`

= `(-(4  - 1 -  4i))/((2 + i)) = -(3 - 4i)/(2 + i)`

= `-(3 - 4i)/(2 + i)  xx (2 - i)/(2 - i)`

= `(-  6  - 4i^2  + 3i  + 8i)/(4 - i^2)  =  (-  6  + 4  +  11i)/(4 + 1)`

= `(- 2 + 11i)/5  = - 2/5  + 11/5 i`

Re`((z_1z_2)/barz_1)  = - 2/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [Page 113]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 12.1 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

(ii) i528


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write 1 − i in polar form.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


The polar form of (i25)3 is


The principal value of the amplitude of (1 + i) is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1}{i}\] is equal to


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Evaluate the following : `1/"i"^58`


Evaluate the following : i–888 


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×