Advertisements
Advertisements
Question
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Solution
Let θ1 be the arg(z1) and θ2 be the arg(z2).
It is given that
\[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\].
Since, z1 is a complex number.
\[z_1 = \left| z_1 \right|\left( \cos \theta_1 + i\sin \theta_1 \right)\]
\[ = \left| z_2 \right|\left[ \cos\left( \pi - \theta_2 \right) + i\sin\left( \pi - \theta_2 \right) \right]\]
\[ = \left| z_2 \right|\left[ - \cos\left( \theta_2 \right) + i\sin\left( \theta_2 \right) \right]\]
\[ = - \left| z_2 \right|\left[ \cos\left( \theta_2 \right) - i\sin\left( \theta_2 \right) \right]\]
\[ = - \bar{{z_2}}\]
Hence,
\[z_1 = - \bar{{z_2}}\].
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
i457
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The polar form of (i25)3 is
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Evaluate the following : `1/"i"^58`
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.