English

( √ − 2 ) ( √ − 3 ) is Equal to - Mathematics

Advertisements
Advertisements

Question

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to

Options

  • \[\sqrt{6}\]

  • \[- \sqrt{6}\]

  • \[i\sqrt{6}\]

  • none of these.

MCQ

Solution

\[- \sqrt{6}\]

\[\sqrt{- 2} \times \sqrt{- 3} \]

\[ = \sqrt{2} \times \sqrt{3} \times \sqrt{- 1} \times \sqrt{- 1}\]

\[ = \sqrt{6} \times i \times i \]

\[ = \sqrt{6} \times i^2 \]

\[ = - \sqrt{6} \left[ \because i^2 = - 1 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 17 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The polar form of (i25)3 is


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Evaluate the following : i–888 


Evaluate the following : i30 + i40 + i50 + i60 


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×