Advertisements
Advertisements
Question
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
Options
\[\sqrt{6}\]
\[- \sqrt{6}\]
\[i\sqrt{6}\]
none of these.
Solution
\[- \sqrt{6}\]
\[\sqrt{- 2} \times \sqrt{- 3} \]
\[ = \sqrt{2} \times \sqrt{3} \times \sqrt{- 1} \times \sqrt{- 1}\]
\[ = \sqrt{6} \times i \times i \]
\[ = \sqrt{6} \times i^2 \]
\[ = - \sqrt{6} \left[ \because i^2 = - 1 \right]\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The polar form of (i25)3 is
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
Show that `(-1 + sqrt3 "i")^3` is a real number.