English

If F ( Z ) = 7 − Z 1 − Z 2 , Where Z = 1 + 2 I Then | F ( Z ) | is - Mathematics

Advertisements
Advertisements

Question

If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is

Options

  • \[\frac{\left| z \right|}{2}\] 

  • \[\left| z \right|\]

  • \[2\left| z \right|\]

  • none of these

MCQ

Solution

\[f\left( z \right) = \frac{7 - z}{1 - z^2}\]

\[ = \frac{7 - \left( 1 + 2i \right)}{1 - \left( 1 + 2i \right)^2}\]

\[ = \frac{7 - 1 - 2i}{1 - \left( 1^2 + 2^2 i^2 + 4i \right)}\]

\[ = \frac{6 - 2i}{1 - 1 + 4 - 4i}\]

\[ = \frac{6 - 2i}{4 - 4i}\]

\[ = \frac{6 - 2i}{4 - 4i} \times \frac{4 + 4i}{4 + 4i}\]

\[ = \frac{24 + 24i - 8i - 8 i^2}{4^2 - 4^2 i^2}\]

\[ = \frac{24 + 16i + 8}{16 + 16}\]

\[ = \frac{32 + 16i}{32}\]

\[ = 1 + \frac{1}{2}i\]

Since 

\[z = 1 + 2i\],

\[\therefore \left| z \right| = \sqrt{\left( 1 \right)^2 + \left( 2 \right)^2}\]

\[ = \sqrt{1 + 4}\]

\[ = \sqrt{5}\]

\[\therefore \left| f\left( z \right) \right| = \sqrt{\left( 1 \right)^2 + \left( \frac{1}{2} \right)^2}\]

\[ = \sqrt{1 + \frac{1}{4}}\]

\[ = \frac{\sqrt{5}}{2}\]

\[ = \frac{\left| z \right|}{2}\]

Hence, the correct answer is option (a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 38 | Page 66

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

(ii) i528


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


Which of the following is correct for any two complex numbers z1 and z2?

 


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if abi = 3a − b + 12i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : `1/"i"^58`


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×