Advertisements
Advertisements
Question
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Solution
\[ x = - 1 + \sqrt{2}i\]
\[ \Rightarrow x^2 = \left( - 1 + \sqrt{2}i \right)^2 \]
\[ = 1 + 2 i^2 - 2\sqrt{2}i\]
\[ = - 1 - 2\sqrt{2}i\]
\[ \Rightarrow x^3 = \left( - 1 - 2\sqrt{2}i \right) \times \left( - 1 + \sqrt{2}i \right)\]
\[ = 1 - \sqrt{2}i + 2\sqrt{2}i - 4 i^2 \]
\[ = 5 + \sqrt{2}i\]
\[ \Rightarrow x^4 = \left( - 1 - 2\sqrt{2}i \right)^2 \]
\[ = 1 + 8 i^2 + 4\sqrt{2}i\]
\[ = - 7 + 4\sqrt{2}i\]
\[ \Rightarrow x^4 + 4 x^3 + 6 x^2 + 4x + 9 = - 7 + 4\sqrt{2}i + 4\left( 5 + \sqrt{2}i \right) + 6\left( - 1 - 2\sqrt{2}i \right) + 4\left( - 1 + \sqrt{2}i \right) + 9\]
\[ = - 7 + 4\sqrt{2}i + 20 + 4\sqrt{2}i - 6 - 12\sqrt{2}i - 4 + 4\sqrt{2}i + 9\]
\[ = 12\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write 1 − i in polar form.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
The polar form of (i25)3 is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
Show that `(-1+sqrt3i)^3` is a real number.