Advertisements
Advertisements
Question
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Solution
\[ x = \frac{1 + i}{\sqrt{2}}\]
\[ \Rightarrow x^2 = \left( \frac{1 + i}{\sqrt{2}} \right)^2 \]
\[ = \left( \frac{1 + i^2 + 2i}{2} \right)\]
\[ = \frac{2i}{2}\]
\[ = i\]
\[ \Rightarrow x^6 = \left( x^2 \right)^3 \]
\[ = i^3 \]
\[ = - i\]
\[ \Rightarrow x^2 = i\]
\[ \Rightarrow x^4 = \left( x^2 \right)^2 \]
\[ = i^2 \]
\[ = - 1\]
\[\text { Now }, x^6 + x^4 + x^2 + 1 = - i - 1 + i + 1\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
The amplitude of \[\frac{1}{i}\] is equal to
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
The value of \[(1 + i )^4 + (1 - i )^4\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i116
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8