Advertisements
Advertisements
Question
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Solution
\[ \left( 1 + i \right) \left( 1 + 2i \right)\]
\[ = 1 + 2i + i + 2 i^2 \]
\[ = 1 + 3i - 2 \left( \because i^2 = - 1 \right)\]
\[ = - 1 + 3i\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i)4
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i35
Evaluate the following : `1/"i"^58`
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
Show that `(-1 + sqrt3 "i")^3` is a real number.