Advertisements
Advertisements
Question
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Solution
Let \[z = x + iy\]
Then,
\[\frac{z - 1}{z + 1} = \frac{x + iy - 1}{x + iy + 1}\]
\[ = \frac{\left( x - 1 \right) + iy}{\left( x + 1 \right) + iy} \times \frac{\left( x + 1 \right) - iy}{\left( x + 1 \right) - iy}\]
\[ = \frac{x^2 + x - ixy - x - 1 + iy + ixy + iy - i^2 y^2}{\left( x + 1 \right)^2 - i^2 y^2}\]
\[ = \frac{x^2 + y^2 - 1 + 2iy}{x^2 + 1 + 2x + y^2} [ \because i^2 = - 1]\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number, then
\[\text { Re }\left( \frac{z - 1}{z + 1} \right) = 0\]
\[ \Rightarrow x^2 + y^2 - 1 = 0\]
\[ \Rightarrow x^2 + y^2 = 1\]
\[ \Rightarrow \left| z \right|^2 = 1\]
\[ \Rightarrow \left| z \right| = 1\]
Thus, the value of \[\left| z \right|\] is 1.
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
The argument of \[\frac{1 - i}{1 + i}\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Show that 1 + i10 + i20 + i30 is a real number
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
2 is not a complex number.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+sqrt3i)^3` is a real number.