Advertisements
Advertisements
Question
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Solution
\[\text { Let } z = \left( 1 - \sin\alpha \right) + i\cos\alpha . \]
\[ \because \text { sine and cosine functions are periodic functions with period } 2\pi . \]
\[\text { So, let us take } \alpha \in [0, 2\pi]\]
\[\text { Now, z } = 1 - \sin\alpha + i\cos\alpha\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 - \sin\alpha \right)^2 + \cos^2 \alpha} = \sqrt{2 - \sin\alpha} = \sqrt{2}\sqrt{1 - \sin\alpha}\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\sqrt{\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)^2} = \sqrt{2}\left| \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right|\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} . \text { Then }, \]
\[\tan\beta = \frac{\left| \cos\alpha \right|}{\left| 1 - \sin\alpha \right|} = \left| \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)^2} \right| = \left| \frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}} \right|\]
\[ \Rightarrow \tan\beta = \left| \frac{1 + \tan\frac{\alpha}{2}}{1 - \tan\frac{\alpha}{2}} \right| = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right|\]
\[\text { Case I: When 0 } \leq \alpha < \frac{\pi}{2}\]
\[\text { In this case, we have }, \]
\[\cos\frac{\alpha}{2} > \sin\frac{\alpha}{2} \text { and } \frac{\pi}{4} + \frac{\alpha}{2} \in [\frac{\pi}{4}, \frac{\pi}{2})\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right)\]
\[ \Rightarrow \beta = \frac{\pi}{4} + \frac{\alpha}{2}\]
\[\text { Clearly, z lies in the first quadrant . Therefore }, \arg\left( z \right) = \frac{\pi}{4} + \frac{\alpha}{2}\]
\[\text { Hence, the polar form of z is } \]
\[\sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) + i\sin\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\}\]
\[\text { Case II: When} \frac{\pi}{2} < \alpha < \frac{3\pi}{2}\]
\[\text { In this case, we have,}\]
\[\cos\frac{\alpha}{2} < \sin\frac{\alpha}{2} \text { and } \frac{\pi}{4} + \frac{\alpha}{2} \in \left( \frac{\pi}{2}, \pi \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right) = - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = - \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) = \tan\left\{ \pi - \left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\} = \tan\left( \frac{3\pi}{4} - \frac{\alpha}{2} \right)\]
\[ \Rightarrow \beta = \frac{3\pi}{4} - \frac{\alpha}{2}\]
\[\text { Clearly, z lies in the fourth quadrant . Therefore,} \arg\left( z \right) = - \beta = - \left( \frac{3\pi}{4} - \frac{\alpha}{2} \right) = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Hence, the polar form of z is} \]
\[ - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) + i\sin\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) \right\}\]
\[\text { Case III: When } \frac{3\pi}{2} < \alpha < 2\pi\]
\[\text { In this case, we have, }\]
\[\cos\frac{\alpha}{2} < \sin\frac{\alpha}{2} and \frac{\pi}{4} + \frac{\alpha}{2} \in \left( \pi, \frac{5\pi}{4} \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left| \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right| = - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) = - \tan\left\{ \pi - \left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\} = \tan\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right)\]
\[ \Rightarrow \beta = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Clearly, z lies in the first quadrant . Therefore,} \arg\left( z \right) = \beta = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Hence, the polar form of z is } \]
\[ - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) + i\sin\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) \right\}\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Evaluate the following:
i457
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
The value of \[(1 + i )^4 + (1 - i )^4\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i–888
Show that 1 + i10 + i20 + i30 is a real number
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8