English

For Any Two Complex Numbers Z1 and Z2 and Any Two Real Numbers A, B, Find the Value of | a Z 1 − B Z 2 | 2 + | a Z 2 + B Z 1 | 2 . - Mathematics

Advertisements
Advertisements

Question

For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].

Solution

\[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2 = \left( a z_1 - b z_2 \right)\left( \bar{{a z_1 - b z_2}} \right) + \left( a z_2 + b z_1 \right)\left( \bar{{a z_2 + b z_1}} \right)\]

\[ = \left( a z_1 - b z_2 \right)\left( a \bar{{z_1}} - b \bar{{z_2}} \right) + \left( a z_2 + b z_1 \right)\left( a \bar{{z_2}} + b \bar{{z_1}} \right)\]

\[ = \left( a^2 z_1 \bar{{z_1}} - ab z_1 \bar{{z_2}} - ab z_2 \bar{{z_1}} + b^2 z_2 \bar{{z_2}} \right) + \left( a^2 z_2 \bar{{z_2}} + ab z_1 \bar{{z_2}} + ab z_2 \bar{{z_1}} + b^2 z_1 \bar{{z_1}} \right)\]

\[ = \left[ \left( a^2 + b^2 \right) z_1 \bar{{z_1}} + \left( a^2 + b^2 \right) z_2 \bar{{z_2}} \right]\]

\[ = \left[ \left( a^2 + b^2 \right)\left( z_1 \bar{{z_1}} + z_2 \bar{{z_2}} \right) \right]\]

\[ = \left[ \left( a^2 + b^2 \right)\left( \left| z_1 \right|^2 + \left| z_2 \right|^2 \right) \right]\]

Hence, 

\[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2 = \left( a^2 + b^2 \right)\left( \left| z_1 \right|^2 + \left| z_2 \right|^2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.5 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.5 | Q 19 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i30 + i80 + i120


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The amplitude of \[\frac{1}{i}\] is equal to


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if (a – b) + (a + b)i = a + 5i


Evaluate the following : i116 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×