English

What is the Smallest Positive Integer N for Which ( 1 + I ) 2 N = ( 1 − I ) 2 N ? - Mathematics

Advertisements
Advertisements

Question

What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?

Solution

\[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n} \]

\[ \Rightarrow \left[ \left( 1 + i \right)^2 \right]^n = \left[ \left( 1 - i \right)^2 \right]^n \]

\[ \Rightarrow \left( 1^2 + i^2 + 2i \right)^n = \left( 1^2 + i^2 - 2i \right)^n \]

\[ \Rightarrow \left( 1 - 1 + 2i \right)^n = \left( 1 - 1 - 2i \right)^n [ \because i^2 = - 1]\]

\[ \Rightarrow \left( 2i \right)^n = \left( - 2i \right)^n \]

\[ \Rightarrow \left( 2i \right)^n = \left( - 1 )^n (2i \right)^n \]

\[ \Rightarrow ( - 1 )^n = 1\]

\[ \Rightarrow \text { n is a multiple of } 2\]

Thus, the smallest positive integer n for which 

\[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] is 2.
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 24 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

(ii) i528


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write −1 + \[\sqrt{3}\] in polar form .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The polar form of (i25)3 is


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1}{i}\] is equal to


The argument of \[\frac{1 - i}{1 + i}\] is


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i30 + i40 + i50 + i60 


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

The order relation is defined on the set of complex numbers.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×