Advertisements
Advertisements
Question
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Solution
\[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n} \]
\[ \Rightarrow \left[ \left( 1 + i \right)^2 \right]^n = \left[ \left( 1 - i \right)^2 \right]^n \]
\[ \Rightarrow \left( 1^2 + i^2 + 2i \right)^n = \left( 1^2 + i^2 - 2i \right)^n \]
\[ \Rightarrow \left( 1 - 1 + 2i \right)^n = \left( 1 - 1 - 2i \right)^n [ \because i^2 = - 1]\]
\[ \Rightarrow \left( 2i \right)^n = \left( - 2i \right)^n \]
\[ \Rightarrow \left( 2i \right)^n = \left( - 1 )^n (2i \right)^n \]
\[ \Rightarrow ( - 1 )^n = 1\]
\[ \Rightarrow \text { n is a multiple of } 2\]
Thus, the smallest positive integer n for which
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
(ii) i528
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write −1 + i \[\sqrt{3}\] in polar form .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The polar form of (i25)3 is
The principal value of the amplitude of (1 + i) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1}{i}\] is equal to
The argument of \[\frac{1 - i}{1 + i}\] is
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i30 + i40 + i50 + i60
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`
Show that `(-1+sqrt3i)^3` is a real number.