English

Express the given complex number in the form a + ib: i–39 - Mathematics

Advertisements
Advertisements

Question

Express the given complex number in the form a + ib: i–39

Sum

Solution

We get, `i^39 = 1/(i^39) = i/(i^2)^19 i`

= `1(-1)^19 i. = 1/(-i)`  [∵ i2 = -1]

= `1/((-1).i) = 1/(-i)`

= `- 1/ixxi/i`

= `(-i)/i^2`

= `(-i)/(-1)`

= i

= 0 + 1i

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise 5.1 [Page 103]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise 5.1 | Q 3 | Page 103

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

(ii) i528


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write −1 + \[\sqrt{3}\] in polar form .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if `1/("a" + "ib")` = 3 – 2i


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


Show that `(-1 + sqrt3 "i")^3` is a real number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×