Advertisements
Advertisements
Question
Express the given complex number in the form a + ib: i–39
Solution
We get, `i^39 = 1/(i^39) = i/(i^2)^19 i`
= `1(-1)^19 i. = 1/(-i)` [∵ i2 = -1]
= `1/((-1).i) = 1/(-i)`
= `- 1/ixxi/i`
= `(-i)/i^2`
= `(-i)/(-1)`
= i
= 0 + 1i
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.