English

If Z1, Z2, Z3 Are Complex Numbers Such that | Z 1 | = | Z 2 | = | Z 3 | = ∣ ∣ ∣ 1 Z 1 + 1 Z 2 + 1 Z 3 ∣ ∣ ∣ = 1 Then Find the Value of | Z 1 + Z 2 + Z 3 | . - Mathematics

Advertisements
Advertisements

Question

If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .

Solution

\[\left| z_1 + z_2 + z_3 \right| = \left| \frac{z_1 \bar{{z_1}}}{\bar{{z_1}}} + \frac{z_2 \bar{{z_2}}}{\bar{{z_2}}} + \frac{z_3 \bar{{z_3}}}{\bar{{z_3}}} \right|\]

\[ = \left| \frac{\left| z_1 \right|^2}{\bar{{z_1}}} + \frac{\left| z_2 \right|^2}{\bar{{z_2}}} + \frac{\left| z_3 \right|^2}{\bar{{z_3}}} \right|\]

\[ = \left| \frac{1}{\bar{{z_1}}} + \frac{1}{\bar{{z_2}}} + \frac{1}{\bar{{z_3}}} \right| [ \because \left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = 1]\]

\[ = \bar{\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right|}\]

\[ = 1 \left[ \because \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1 \right]\]

Thus, the value of \[\left| z_1 + z_2 + z_3 \right|\] is 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 25 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The argument of \[\frac{1 - i}{1 + i}\] is


The value of \[(1 + i )^4 + (1 - i )^4\] is


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i888 


Evaluate the following : i116 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


State True or False for the following:

2 is not a complex number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×