Advertisements
Advertisements
प्रश्न
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
उत्तर
\[\text { Let } z = \left( 1 - \sin\alpha \right) + i\cos\alpha . \]
\[ \because \text { sine and cosine functions are periodic functions with period } 2\pi . \]
\[\text { So, let us take } \alpha \in [0, 2\pi]\]
\[\text { Now, z } = 1 - \sin\alpha + i\cos\alpha\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 - \sin\alpha \right)^2 + \cos^2 \alpha} = \sqrt{2 - \sin\alpha} = \sqrt{2}\sqrt{1 - \sin\alpha}\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\sqrt{\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)^2} = \sqrt{2}\left| \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right|\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} . \text { Then }, \]
\[\tan\beta = \frac{\left| \cos\alpha \right|}{\left| 1 - \sin\alpha \right|} = \left| \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)^2} \right| = \left| \frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}} \right|\]
\[ \Rightarrow \tan\beta = \left| \frac{1 + \tan\frac{\alpha}{2}}{1 - \tan\frac{\alpha}{2}} \right| = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right|\]
\[\text { Case I: When 0 } \leq \alpha < \frac{\pi}{2}\]
\[\text { In this case, we have }, \]
\[\cos\frac{\alpha}{2} > \sin\frac{\alpha}{2} \text { and } \frac{\pi}{4} + \frac{\alpha}{2} \in [\frac{\pi}{4}, \frac{\pi}{2})\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right)\]
\[ \Rightarrow \beta = \frac{\pi}{4} + \frac{\alpha}{2}\]
\[\text { Clearly, z lies in the first quadrant . Therefore }, \arg\left( z \right) = \frac{\pi}{4} + \frac{\alpha}{2}\]
\[\text { Hence, the polar form of z is } \]
\[\sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) + i\sin\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\}\]
\[\text { Case II: When} \frac{\pi}{2} < \alpha < \frac{3\pi}{2}\]
\[\text { In this case, we have,}\]
\[\cos\frac{\alpha}{2} < \sin\frac{\alpha}{2} \text { and } \frac{\pi}{4} + \frac{\alpha}{2} \in \left( \frac{\pi}{2}, \pi \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right) = - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = - \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) = \tan\left\{ \pi - \left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\} = \tan\left( \frac{3\pi}{4} - \frac{\alpha}{2} \right)\]
\[ \Rightarrow \beta = \frac{3\pi}{4} - \frac{\alpha}{2}\]
\[\text { Clearly, z lies in the fourth quadrant . Therefore,} \arg\left( z \right) = - \beta = - \left( \frac{3\pi}{4} - \frac{\alpha}{2} \right) = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Hence, the polar form of z is} \]
\[ - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) + i\sin\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) \right\}\]
\[\text { Case III: When } \frac{3\pi}{2} < \alpha < 2\pi\]
\[\text { In this case, we have, }\]
\[\cos\frac{\alpha}{2} < \sin\frac{\alpha}{2} and \frac{\pi}{4} + \frac{\alpha}{2} \in \left( \pi, \frac{5\pi}{4} \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left| \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right| = - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) = - \tan\left\{ \pi - \left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\} = \tan\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right)\]
\[ \Rightarrow \beta = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Clearly, z lies in the first quadrant . Therefore,} \arg\left( z \right) = \beta = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Hence, the polar form of z is } \]
\[ - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) + i\sin\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) \right\}\]
APPEARS IN
संबंधित प्रश्न
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
The polar form of (i25)3 is
The principal value of the amplitude of (1 + i) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The amplitude of \[\frac{1}{i}\] is equal to
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Which of the following is correct for any two complex numbers z1 and z2?
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Evaluate the following : i–888
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.