मराठी

Evaluate the Following:\[( I^{77} + I^{70} + I^{87} + I^{414} )^3\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]

उत्तर

\[\left( i^{77} + i^{70} + i^{87} + i^{414} \right)^3 = \left( i^{4 \times 19 + 1} + i^{4 \times 17 + 2} + i^{4 \times 21 + 3} + i^{4 \times 103 + 2} \right)^3 \]

\[ = \left[ \left\{ \left( i^4 \right)^{19} \times i \right\} + \left\{ \left( i^4 \right)^{17} \times i^2 \right\} + \left\{ \left( i^4 \right)^{21} \times i^3 \right\} + \left\{ \left( i^4 \right)^{103} \times i^2 \right\} \right]\]

\[ = \left( i - 1 - i - 1 \right)^3 \left( \because i^4 = 1, i^3 = - i and i^2 = - 1 \right)\]

\[ = \left( - 2 \right)^3 \]

\[ = - 8\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.1 | Q 1.6 | पृष्ठ ३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

(ii) i528


Show that 1 + i10 + i20 + i30 is a real number.


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Find the multiplicative inverse of the following complex number:

1 − i


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The amplitude of \[\frac{1}{i}\] is equal to


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×