मराठी

Express the Following Complex in the Form R(Cos θ + I Sin θ): Tan α − I - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex in the form r(cos θ + i sin θ):

 tan α − i

उत्तर

\[ \text { Let }z = \tan \alpha - i \]

\[ \because \tan \alpha\text {  is periodic with period } \pi . \text { So, let us take } \]

\[\alpha \in [0, \frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]

\[\text { Case I }: \]

\[z = \tan \alpha - i \]

\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]

\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]

\[ = \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by }\tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]

\[ = \left| \cot \alpha \right|\]

\[ = \cot \alpha\]

\[ = \tan \left( \frac{\pi}{2} - \alpha \right)\]

\[ \Rightarrow \beta = \frac{\pi}{2} - \alpha \]

\[\text { We can see that Re }(z) > 0 \text { and Im}(z) < 0 . \text { So, z lies in the fourth quadrant }. \]

\[ \therefore \arg(z) = - \beta = \alpha - \frac{\pi}{2}\]

\[\text { Thus, z in the polar form is given by }\]

\[z = \sec \alpha \left\{ \cos\left( \alpha - \frac{\pi}{2} \right) + i\sin \left( \alpha - \frac{\pi}{2} \right) \right\} \]

\[\text { Case II }: \]

\[z = \tan \alpha - i \]

\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]

\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]

\[ = - \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]

\[ = \left| \cot \alpha \right|\]

\[ = - \cot \alpha\]

\[ = \tan \left( \alpha - \frac{\pi}{2} \right)\]

\[ \Rightarrow \beta = \alpha - \frac{\pi}{2}\]

\[\text{We can see that Re}(z) < 0 \text { and Im} (z) < 0 . So, z \text { lies in the third quadrant }. \]

\[ \therefore \arg(z) = \pi + \beta = \frac{\pi}{2} + \alpha\]

\[\text { Thus, z in the polar form is given by } \]

\[z = - \sec \alpha \left\{ \cos\left( \frac{\pi}{2} + \alpha \right) + i\sin \left( \frac{\pi}{2} + \alpha \right) \right\} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.4 | Q 3.2 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the argument of −i.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i403 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


State True or False for the following:

2 is not a complex number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×