Advertisements
Advertisements
प्रश्न
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
उत्तर
\[ \text { Let }z = \tan \alpha - i \]
\[ \because \tan \alpha\text { is periodic with period } \pi . \text { So, let us take } \]
\[\alpha \in [0, \frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]
\[\text { Case I }: \]
\[z = \tan \alpha - i \]
\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]
\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]
\[ = \sec \alpha\]
\[\text { Let } \beta \text { be an acute angle given by }\tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]
\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]
\[ = \left| \cot \alpha \right|\]
\[ = \cot \alpha\]
\[ = \tan \left( \frac{\pi}{2} - \alpha \right)\]
\[ \Rightarrow \beta = \frac{\pi}{2} - \alpha \]
\[\text { We can see that Re }(z) > 0 \text { and Im}(z) < 0 . \text { So, z lies in the fourth quadrant }. \]
\[ \therefore \arg(z) = - \beta = \alpha - \frac{\pi}{2}\]
\[\text { Thus, z in the polar form is given by }\]
\[z = \sec \alpha \left\{ \cos\left( \alpha - \frac{\pi}{2} \right) + i\sin \left( \alpha - \frac{\pi}{2} \right) \right\} \]
\[\text { Case II }: \]
\[z = \tan \alpha - i \]
\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]
\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]
\[ = - \sec \alpha\]
\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]
\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]
\[ = \left| \cot \alpha \right|\]
\[ = - \cot \alpha\]
\[ = \tan \left( \alpha - \frac{\pi}{2} \right)\]
\[ \Rightarrow \beta = \alpha - \frac{\pi}{2}\]
\[\text{We can see that Re}(z) < 0 \text { and Im} (z) < 0 . So, z \text { lies in the third quadrant }. \]
\[ \therefore \arg(z) = \pi + \beta = \frac{\pi}{2} + \alpha\]
\[\text { Thus, z in the polar form is given by } \]
\[z = - \sec \alpha \left\{ \cos\left( \frac{\pi}{2} + \alpha \right) + i\sin \left( \frac{\pi}{2} + \alpha \right) \right\} \]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
(ii) i528
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The polar form of (i25)3 is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if abi = 3a − b + 12i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
Show that 1 + i10 + i20 + i30 is a real number
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.