हिंदी

Express the Following Complex in the Form R(Cos θ + I Sin θ): Tan α − I - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following complex in the form r(cos θ + i sin θ):

 tan α − i

उत्तर

\[ \text { Let }z = \tan \alpha - i \]

\[ \because \tan \alpha\text {  is periodic with period } \pi . \text { So, let us take } \]

\[\alpha \in [0, \frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]

\[\text { Case I }: \]

\[z = \tan \alpha - i \]

\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]

\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]

\[ = \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by }\tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]

\[ = \left| \cot \alpha \right|\]

\[ = \cot \alpha\]

\[ = \tan \left( \frac{\pi}{2} - \alpha \right)\]

\[ \Rightarrow \beta = \frac{\pi}{2} - \alpha \]

\[\text { We can see that Re }(z) > 0 \text { and Im}(z) < 0 . \text { So, z lies in the fourth quadrant }. \]

\[ \therefore \arg(z) = - \beta = \alpha - \frac{\pi}{2}\]

\[\text { Thus, z in the polar form is given by }\]

\[z = \sec \alpha \left\{ \cos\left( \alpha - \frac{\pi}{2} \right) + i\sin \left( \alpha - \frac{\pi}{2} \right) \right\} \]

\[\text { Case II }: \]

\[z = \tan \alpha - i \]

\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]

\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]

\[ = - \sec \alpha\]

\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]

\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]

\[ = \left| \cot \alpha \right|\]

\[ = - \cot \alpha\]

\[ = \tan \left( \alpha - \frac{\pi}{2} \right)\]

\[ \Rightarrow \beta = \alpha - \frac{\pi}{2}\]

\[\text{We can see that Re}(z) < 0 \text { and Im} (z) < 0 . So, z \text { lies in the third quadrant }. \]

\[ \therefore \arg(z) = \pi + \beta = \frac{\pi}{2} + \alpha\]

\[\text { Thus, z in the polar form is given by } \]

\[z = - \sec \alpha \left\{ \cos\left( \frac{\pi}{2} + \alpha \right) + i\sin \left( \frac{\pi}{2} + \alpha \right) \right\} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.4 | Q 3.2 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate the following:

(ii) i528


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The polar form of (i25)3 is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if abi = 3a − b + 12i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i888 


Show that 1 + i10 + i20 + i30 is a real number


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×