Advertisements
Advertisements
प्रश्न
Solve the equation \[\left| z \right| = z + 1 + 2i\].
उत्तर
Let \[z = x + iy\]
Then,
\[\left| z \right| = \sqrt{x^2 + y^2}\]
\[\therefore \left| z \right| = z + 1 + 2i\]
\[ \Rightarrow \sqrt{x^2 + y^2} = \left( x + iy \right) + 1 + 2i\]
\[ \Rightarrow \sqrt{x^2 + y^2} = \left( x + 1 \right) + i\left( y + 2 \right)\]
\[ \Rightarrow \sqrt{x^2 + y^2} = \left( x + 1 \right) \text { and } y + 2 = 0\]
\[ \Rightarrow x^2 + y^2 = \left( x + 1 \right)^2 \text { and } y = - 2\]
\[ \Rightarrow x^2 + y^2 = x^2 + 1 + 2x \text { and } y = - 2\]
\[ \Rightarrow y^2 = 2x + 1\text { and } y = - 2\]
\[ \Rightarrow 4 = 2x + 1 \text { and } y = - 2\]
\[ \Rightarrow 2x = 3 \text { and } y = - 2\]
\[ \Rightarrow x = \frac{3}{2} \text { and } y = - 2\]
\[\therefore z = x + iy = \frac{3}{2} - 2i\]
Thus,
\[z = \frac{3}{2} - 2i\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i93
Evaluate the following : i30 + i40 + i50 + i60
State True or False for the following:
2 is not a complex number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`