Advertisements
Advertisements
प्रश्न
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
विकल्प
\[\frac{1}{2}(1 + i)\]
\[\frac{1}{2}(1 - i)\]
1
\[\frac{1}{2}\]
उत्तर
\[\frac{1}{2}(1 + i)\]
\[\frac{i^5 + i^6 + i^7 + i^8 + i^9}{1 + i}\]
\[ = \frac{i - 1 - i + 1 + i}{1 + i}\left[ \text { As,} i^5 = i, i^6 = - 1, i^7 = - i, i^8 = 1, i^9 = i \right]$\]
\[ = \frac{i}{i + 1}\]
\[ = \frac{i}{i + 1} \times \frac{i - 1}{i - 1}\]
\[ = \frac{i\left( i - 1 \right)}{i^2 - 1}\]
\[ = \frac{i^2 - i}{- 2}\]
\[ = \frac{1}{2}\left( 1 + i \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Write −1 + i \[\sqrt{3}\] in polar form .
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The polar form of (i25)3 is
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i888
Evaluate the following : i116
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
Show that `(-1+sqrt3i)^3` is a real number.