हिंदी

Write the Sum of the Series I + I 2 + I 3 + . . . . Upto 1000 Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.

उत्तर

We know that, \[i + i^2 + i^3 + i^4 = i - 1 - i + 1 = 0\]

\[\therefore i + i^2 + i^3 + . . . . + i^{1000} \]

\[ = \left( i + i^2 + i^3 + i^4 \right) + \left( i^5 + i^6 + i^7 + i^8 \right) + . . . + \left( i^{997} + i^{998} + i^{999} + i^{1000} \right)\]

\[ = \left( i + i^2 + i^3 + i^4 \right) + \left( i^4 i + i^4 i^2 + i^4 i^3 + i^4 i^4 \right) + . . . + \left[ \left( i^4 \right)^{249} i + \left( i^4 \right)^{249} i^2 + \left( i^4 \right)^{249} i^3 + \left( i^4 \right)^{249} i^4 \right]\]

\[ = \left( i + i^2 + i^3 + i^4 \right) + \left( i + i^2 + i^3 + i^4 \right) + . . . + \left( i + i^2 + i^3 + i^4 \right)\]

\[ = 0\]

Thus, the sum of the series 

\[i + i^2 + i^3 + . . . .\] upto 1000 terms is 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.5 | Q 16 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write −1 + \[\sqrt{3}\] in polar form .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The amplitude of \[\frac{1}{i}\] is equal to


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a – b) + (a + b)i = a + 5i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Evaluate the following : i888 


Evaluate the following : i116 


Evaluate the following : i403 


Show that 1 + i10 + i20 + i30 is a real number


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×