Advertisements
Advertisements
प्रश्न
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
उत्तर
\[\frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]
\[ = \frac{(1 + cos\theta) + isin\theta}{(1 - cos\theta) - isin\theta} \times \frac{(1 - cos\theta) + isin\theta}{(1 - cos\theta) + isin\theta}\]
\[ = \frac{1 - \cos\theta + i\sin\theta + \cos\theta - \cos^2 \theta + i\cos\theta\sin\theta + i\sin\theta - i\sin\theta\cos\theta + i^2 \sin^2 \theta}{(1 - \cos\theta )^2 - i^2 \sin^2 \theta}\]
\[ = \frac{1 - \cos^2 \theta - \sin^2 \theta + 2i\sin\theta}{1 + \cos^2 \theta - 2i\cos\theta + \sin^2 \theta}\phantom{.....}...[ \because i^2 = - 1]\]
\[ = \frac{\sin^2 \theta - \sin^2 \theta + 2i\sin\theta}{2 - 2i\cos\theta} \phantom{.....}...[ \because \cos^2 \theta + \sin^2 \theta = 1]\]
\[ = \frac{i\sin\theta}{1 - \cos\theta}\]
\[ = \frac{\cancel{2}i\cancel{\sin\frac{\theta}{2}}\cos\frac{\theta}{2}}{\cancel{2}\cancel{\sin^2 \frac{\theta}{2}}}\]
\[ = i\cot\frac{\theta}{2}\]
Thus, \[\frac{1 + a}{1 - a} = i\cot\frac{\theta}{2}\].
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
Show that `(-1+ sqrt(3)i)^3` is a real number.