Advertisements
Advertisements
Question
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Solution
\[\frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]
\[ = \frac{(1 + cos\theta) + isin\theta}{(1 - cos\theta) - isin\theta} \times \frac{(1 - cos\theta) + isin\theta}{(1 - cos\theta) + isin\theta}\]
\[ = \frac{1 - \cos\theta + i\sin\theta + \cos\theta - \cos^2 \theta + i\cos\theta\sin\theta + i\sin\theta - i\sin\theta\cos\theta + i^2 \sin^2 \theta}{(1 - \cos\theta )^2 - i^2 \sin^2 \theta}\]
\[ = \frac{1 - \cos^2 \theta - \sin^2 \theta + 2i\sin\theta}{1 + \cos^2 \theta - 2i\cos\theta + \sin^2 \theta}\phantom{.....}...[ \because i^2 = - 1]\]
\[ = \frac{\sin^2 \theta - \sin^2 \theta + 2i\sin\theta}{2 - 2i\cos\theta} \phantom{.....}...[ \because \cos^2 \theta + \sin^2 \theta = 1]\]
\[ = \frac{i\sin\theta}{1 - \cos\theta}\]
\[ = \frac{\cancel{2}i\cancel{\sin\frac{\theta}{2}}\cos\frac{\theta}{2}}{\cancel{2}\cancel{\sin^2 \frac{\theta}{2}}}\]
\[ = i\cot\frac{\theta}{2}\]
Thus, \[\frac{1 + a}{1 - a} = i\cot\frac{\theta}{2}\].
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write 1 − i in polar form.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
The principal value of the amplitude of (1 + i) is
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Evaluate the following : i116
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`