हिंदी

Find the Value of the Following Expression:1+ I2 + I4 + I6 + I8 + ... + I20 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20

उत्तर

\[(vi) 1 + i^2 + i^4 + i^6 + i^8 + . . . + i^{20} \]

\[ \because i^2 = - 1, \]

\[ i^4 = 1, \]

\[ i^6 = - 1, \]

\[ i^8 = 1, \]

\[ i^{20} = 1\]

\[ \therefore 1 + i^2 + i^4 + i^6 + i^8 + . . . + i^{20} \]

\[ = \left[ 1 + \left( - 1 \right) \right] + \left[ 1 + \left( - 1 \right) \right] + \left[ 1 + \left( - 1 \right) \right] + . . . + \left[ 1 + \left( - 1 \right) \right] + 1\]

\[ = 5 \times \left[ 1 + \left( - 1 \right) \right] + 1 \left[ \text { As, there are 11 terms} \right]\]

\[ = 5 \times 0 + 1\]

\[ = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.1 | Q 3.6 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


Find a and b if `1/("a" + "ib")` = 3 – 2i


Evaluate the following : i93  


Evaluate the following : i116 


Evaluate the following : i–888 


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×