हिंदी

The Amplitude of 1 + I √ 3 √ 3 + I is - Mathematics

Advertisements
Advertisements

प्रश्न

The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 

विकल्प

  • \[\frac{\pi}{3}\]

  • \[- \frac{\pi}{3}\]

  • \[\frac{\pi}{6}\]

  • \[- \frac{\pi}{6}\]

MCQ

उत्तर

\[\frac{\pi}{6}\]

\[\text { Let }z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}\]

\[ \Rightarrow z=\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\times\frac{\sqrt{3} - i}{\sqrt{3} - i}\]

\[ \Rightarrow z=\frac{\sqrt{3} + 2i - \sqrt{3} i^2}{3 - i^2}\]

\[ \Rightarrow z=\frac{\sqrt{3} + \sqrt{3} + 2i}{4}\]

\[ \Rightarrow z = \frac{2\sqrt{3} + 2i}{4}\]

\[ \Rightarrow z = \frac{\sqrt{3}}{2} + \frac{1}{2}i\]

\[\tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[ = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \alpha = \frac{\pi}{6}\]

\[\text { Since, z lies in the first quadrant } . \]

\[\text{Therefore,} arg(z)=\tan^{- 1}\left( \frac{1}{\sqrt{3}} \right)=\frac{\pi}{6}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 32 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The argument of \[\frac{1 - i}{1 + i}\] is


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i35 


Evaluate the following : i93  


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


State True or False for the following:

2 is not a complex number.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×