Advertisements
Advertisements
प्रश्न
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
उत्तर
\[ z_1 = 2 - i, z_2 = - 2 + i, z_1 = 2 + i\]
\[ \therefore \left( \frac{z_1 z_2}{z_1} \right) = \left( \frac{\left[ 2 - i \right]\left[ - 2 + i \right]}{2 + i} \right)\]
\[ = \left( \frac{- 4 + 2i + 2i - i^2}{2 + i} \right)\]
\[ = \left( \frac{- 3 + 4i}{2 + i} \right)\]
\[ = \left[ \frac{- 3 + 4i}{2 + i} \times \left( \frac{2 - i}{2 - i} \right) \right]\]
\[ = \left( \frac{- 6 + 3i + 8i - 4 i^2}{2^2 - i^2} \right)\]
\[ = \left( \frac{- 2 + 11i}{4 - \left( - 1 \right)} \right)\]
\[ = \left( \frac{- 2 + 11i}{5} \right)\]
\[Re\left( \frac{z_1 z_2}{z_1} \right) = \frac{- 2}{5}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
The argument of \[\frac{1 - i}{1 + i}\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : `1/"i"^58`
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`