हिंदी

If π < θ < 2π and Z = 1 + Cos θ + I Sin θ, Then Write the Value of | Z | . - Mathematics

Advertisements
Advertisements

प्रश्न

If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .

उत्तर

\[\pi < \theta < 2\pi\]

\[ \frac{\pi}{2} < \frac{\theta}{2} < \pi \left( \text { Dividing by } 2 \right)\]

\[z = 1 + \cos\theta + i sin\theta\]

\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 + \cos\theta \right)^2 + \sin^2 \theta}\]

\[ \Rightarrow \left| z \right| = \sqrt{1 + \cos^2 \theta + 2\cos\theta + \sin^2 \theta}\]

\[ \Rightarrow \left| z \right| = \sqrt{1 + 1 + 2\cos\theta}\]

\[ \Rightarrow \left| z \right| = \sqrt{2\left( 1 + \cos\theta \right)}\]

\[ \Rightarrow \left| z \right| = \sqrt{2 \times 2 \cos^2 \frac{\theta}{2}}\]

\[ \Rightarrow \left| z \right| = 2\sqrt{\cos^2 \frac{\theta}{2}}\]

\[ \Rightarrow \left| z \right| = - 2\cos\frac{\theta}{2} \left[ \text { Since } \frac{\pi}{2} < \frac{\theta}{2} < \pi , \cos\frac{\theta}{2} \text { is negative } \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.5 | Q 4 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


Write 1 − i in polar form.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The principal value of the amplitude of (1 + i) is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


Find a and b if `1/("a" + "ib")` = 3 – 2i


Evaluate the following : i116 


Evaluate the following : i403 


Evaluate the following : `1/"i"^58`


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1 + sqrt3 "i")^3` is a real number.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×