Advertisements
Advertisements
प्रश्न
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
उत्तर
\[\pi < \theta < 2\pi\]
\[ \frac{\pi}{2} < \frac{\theta}{2} < \pi \left( \text { Dividing by } 2 \right)\]
\[z = 1 + \cos\theta + i sin\theta\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 + \cos\theta \right)^2 + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + \cos^2 \theta + 2\cos\theta + \sin^2 \theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{1 + 1 + 2\cos\theta}\]
\[ \Rightarrow \left| z \right| = \sqrt{2\left( 1 + \cos\theta \right)}\]
\[ \Rightarrow \left| z \right| = \sqrt{2 \times 2 \cos^2 \frac{\theta}{2}}\]
\[ \Rightarrow \left| z \right| = 2\sqrt{\cos^2 \frac{\theta}{2}}\]
\[ \Rightarrow \left| z \right| = - 2\cos\frac{\theta}{2} \left[ \text { Since } \frac{\pi}{2} < \frac{\theta}{2} < \pi , \cos\frac{\theta}{2} \text { is negative } \right]\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Write 1 − i in polar form.
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The principal value of the amplitude of (1 + i) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
If z is a complex number, then
Find a and b if `1/("a" + "ib")` = 3 – 2i
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
Show that `(-1 + sqrt3 "i")^3` is a real number.
Show that `(-1+ sqrt(3)i)^3` is a real number.