हिंदी

Evaluate the Following:\[\Left( I^{41} + \Frac{1}{I^{257}} \Right)^9\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]

उत्तर

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9 = \left( i^{4 \times 10 + 1} + \frac{1}{i^{4 \times 64 + 1}} \right)^9 \]

\[ = \left[ \left( i^4 \right)^{10} \times i + \frac{1}{\left( i^4 \right)^{64} \times i} \right]^9 \]

\[ = \left( i + \frac{1}{i} \right)^9 \left(\because i^4 = 1\right)\]

\[= \left( i + \frac{i}{i^2} \right)^9 \]

\[ = \left( i - i \right)^9 \left( \because i^2 = - 1 \right)\]

\[ = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.1 | Q 1.5 | पृष्ठ ३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

i457


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Show that 1 + i10 + i20 + i30 is a real number.


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write −1 + \[\sqrt{3}\] in polar form .


Write the argument of −i.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


The polar form of (i25)3 is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


The amplitude of \[\frac{1}{i}\] is equal to


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


If z is a complex numberthen


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


State True or False for the following:

The order relation is defined on the set of complex numbers.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×