Advertisements
Advertisements
प्रश्न
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
विकल्प
1
-1
2
-2
उत्तर
\[a - ib = \frac{3 - 4ix}{3 + 4ix}\]
\[ = \frac{3 - 4ix}{3 + 4ix} \times \frac{3 - 4ix}{3 - 4ix}\]
\[ = \frac{9 + 16 x^2 i^2 - 24xi}{9 - 16 x^2 i^2}\]
\[ = \frac{\left( 9 - 16 x^2 \right) - i\left( 24x \right)}{9 + 16 x^2}\]
\[ \Rightarrow \left| a - ib \right|^2 = \left| \frac{\left( 9 - 16 x^2 \right) - i\left( 24x \right)}{9 + 16 x^2} \right|^2 \]
\[ \Rightarrow a^2 + b^2 = \frac{\left( 9 - 16 x^2 \right)^2 + \left( 24x \right)^2}{\left( 9 + 16 x^2 \right)^2}\]
\[ = \frac{81 + 256 x^4 - 288 x^2 + 576 x^2}{\left( 9 + 16 x^2 \right)^2}\]
\[ = \frac{81 + 256 x^4 + 288 x^2}{\left( 9 + 16 x^2 \right)^2}\]
\[ = \frac{\left( 9 + 16 x^2 \right)^2}{\left( 9 + 16 x^2 \right)^2}\]
\[ = 1\]
Hence, the correct option is (a).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write 1 − i in polar form.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i403
Evaluate the following : i–888
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.