हिंदी

If 3 + 2 I Sin θ 1 − 2 I Sin θ is a Real Number and 0 < θ < 2π, Then θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =

विकल्प

  • π

  • `pi/2`

  • `pi/3`

  • `pi/6`

MCQ

उत्तर

π
Given:

\[\frac{3 + 2i\sin\theta}{1 - 2i \sin\theta}\] is a real number

On rationalising, we get,

\[\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \times \frac{1 + 2i \sin \theta}{1 + 2i \sin \theta} \]

\[ = \frac{(3 + 2i \sin \theta) (1 + 2i \sin \theta)}{(1 )^2 - (2i \sin \theta )^2}\]

\[ = \frac{3 + 2i \sin \theta + 6i \sin \theta + 4 i^2 \sin^2 \theta}{1 + 4 \sin^2 \theta}\]

\[ = \frac{3 - 4 \sin^2 \theta + 8i \sin \theta}{1 + 4 \sin^2 \theta} \left[ \because i^2 = - 1 \right]\]

\[ = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} + i\frac{8 \sin \theta}{1 + 4 \sin^2 \theta}\] For the above term to be real, the imaginary part has to be zero.

\[\therefore \frac{8\sin\theta}{1 + 4 \sin^2 \theta} = 0\]

\[ \Rightarrow 8\sin\theta = 0\]

For this to be zero,
sin\[\theta\]= 0

\[\Rightarrow\]\[\theta\]= 0,

\[\pi, 2\pi, 3\pi . . .\]

But

\[0 < \theta < 2\pi\]

Hence,

\[\theta = \pi\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 2 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The polar form of (i25)3 is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i93  


Evaluate the following : i116 


Evaluate the following : i403 


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×