मराठी

If 3 + 2 I Sin θ 1 − 2 I Sin θ is a Real Number and 0 < θ < 2π, Then θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =

पर्याय

  • π

  • `pi/2`

  • `pi/3`

  • `pi/6`

MCQ

उत्तर

π
Given:

\[\frac{3 + 2i\sin\theta}{1 - 2i \sin\theta}\] is a real number

On rationalising, we get,

\[\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \times \frac{1 + 2i \sin \theta}{1 + 2i \sin \theta} \]

\[ = \frac{(3 + 2i \sin \theta) (1 + 2i \sin \theta)}{(1 )^2 - (2i \sin \theta )^2}\]

\[ = \frac{3 + 2i \sin \theta + 6i \sin \theta + 4 i^2 \sin^2 \theta}{1 + 4 \sin^2 \theta}\]

\[ = \frac{3 - 4 \sin^2 \theta + 8i \sin \theta}{1 + 4 \sin^2 \theta} \left[ \because i^2 = - 1 \right]\]

\[ = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} + i\frac{8 \sin \theta}{1 + 4 \sin^2 \theta}\] For the above term to be real, the imaginary part has to be zero.

\[\therefore \frac{8\sin\theta}{1 + 4 \sin^2 \theta} = 0\]

\[ \Rightarrow 8\sin\theta = 0\]

For this to be zero,
sin\[\theta\]= 0

\[\Rightarrow\]\[\theta\]= 0,

\[\pi, 2\pi, 3\pi . . .\]

But

\[0 < \theta < 2\pi\]

Hence,

\[\theta = \pi\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 2 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate the following:

i457


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The polar form of (i25)3 is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The argument of \[\frac{1 - i}{1 + i}\] is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i–888 


Evaluate the following : i30 + i40 + i50 + i60 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×